Generalized Linear Mixed Models

- GLM + Mixed effects
- Goal: Add random effects or correlations among observations to a model where observations arise from a distribution in the exponential-scale family (other than the normal)
- Why:
 - More than one source of variation (e.g. farm and animal within farm)
 - Account for temporal correlation
 - Provides another way to deal with overdispersion
- Take home message: Can be done, but a lot harder than a linear mixed effect model
- Because: both computation and interpretation issues

- Another look at the canonical LME: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \epsilon$
- Consider each level of variation separately.
 A hierarchical or multi-level model

$$egin{array}{lll} oldsymbol{\eta} & = & oldsymbol{X}eta + oldsymbol{Z}oldsymbol{u} \ & \sim & N(oldsymbol{X}eta, oldsymbol{R}) \ oldsymbol{Y}|oldsymbol{u} & = & oldsymbol{X}eta + oldsymbol{Z}oldsymbol{u} + \epsilon \ & \sim & N(oldsymbol{X}eta + oldsymbol{Z}oldsymbol{u} + oldsymbol{R}) \end{array}$$

• Above specifies the conditional distribution of ${m Y}$ given ${m \eta}$ or equivalently ${m u}$

To write down a likelihood, need the marginal pdf of Y

$$f(\mathbf{Y}, \mathbf{u}) = f(\mathbf{Y}|\mathbf{u})f(\mathbf{u})$$

$$f(\mathbf{Y}) = \int_{\mathbf{u}} f(\mathbf{Y}, \mathbf{u})d\mathbf{u}$$

$$= \int_{\mathbf{u}} f(\mathbf{Y}|\mathbf{u})f(\mathbf{u})d\mathbf{u}$$

• When ${\it u} \sim {\it N}()$ and $\epsilon \sim {\it N}()$, that integral has a closed form solution

$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \, \mathbf{Z}\mathbf{G}\mathbf{Z}' + \mathbf{R})$$

- ullet Extend to GLMs by changing conditional distribution of $oldsymbol{Y}|oldsymbol{u}$
 - Logistic: $f(Y_i|\mathbf{u}) \sim Binomial(m_i, \pi_i(\mathbf{u}))$
 - Poisson: $f(Y_i|\mathbf{u}) \sim Poisson(\lambda_i(\mathbf{u}))$

- Big problem: Usually no analytic solutions to f(Y)
 No closed form solution to the integral
- Some exceptions:
 - $\mathbf{Y}|\boldsymbol{\eta} \sim \textit{Binomial}(\boldsymbol{m}, \boldsymbol{\eta}), \, \boldsymbol{\eta} \sim \beta(\alpha, \beta)$ $\mathbf{Y} \sim \textit{BetaBinomial}$
 - $\mathbf{Y}|\eta \sim Poisson(\eta), \, \boldsymbol{\eta} \sim \Gamma(\alpha, \beta)$ $\mathbf{Y} \sim NegativeBinomial$
- Ok for one level of additional variability, but difficult (if not impossible) to extend to multiple random effects
- Normal distributions are very very nice:
 - Easy to model multiple random effects: the sum of Normals is Normal
 - Easy to model correlations among observations
- Want a way to fit a model like:

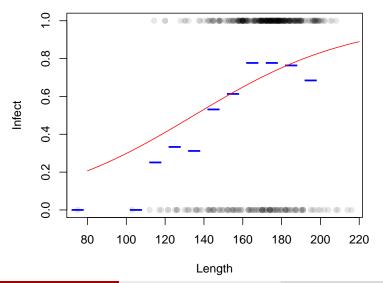
$$egin{array}{lll} oldsymbol{\mu} &=& g^{-1}(oldsymbol{X}eta+oldsymbol{Z}oldsymbol{u}), \;\; oldsymbol{u}\sim N(oldsymbol{0},oldsymbol{G}) \ oldsymbol{Y}|oldsymbol{\mu} &=& f(oldsymbol{\mu}) \end{array}$$

- Example: probability of red deer infection by the parasitic nematode E. cervi
- Expected to vary by deer size (length)
- Sampling scheme:
 - 24 farms in Spain. Consider only male deer. 2 farms excluded because no male deer.
 - 2 From 3 to 83 deer per farm. Total of 447 deer.
- Response is 1: deer infected with parasite, 0: not
- Goals:
 - describe the relationship between length and P[infect]
 - predict P[infect] for a deer of a specified length
- Consider the model $i \in \{1, 2, ..., 447\}$ indexes deer

$$Y_i \sim Bernoulii(\pi_i)$$

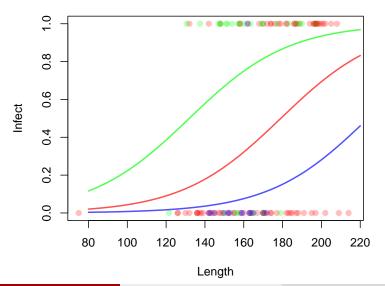
logit $\pi_i = \mu + \beta I_i$,

where Y_i is infection status (0/1) and I_i is the length of the deer



- Problem: deer not sampled randomly from one population
- Two stages: farms, then deer within farm.
- Farms are likely to differ.
- Consider the model, $i \in \{1, 2, ..., 24\}$ indexes farms, $j \in \{1, 2, ..., n_i\}$ indexes deer within farm:

$$Y_{ij} \sim \textit{Bernoulii}(\pi_{ij})$$
 logit $\pi_{ij} = \mu + \alpha_i + \beta I_{ij}$



• $\hat{\beta}$ for Length is 0.0391. Each additional 10cm of length multiplies odds of infection by $e^{10\times0.0391}=1.47$

when compared to other length deer on the same farm

- Model provides estimates of P[infect| length] for these 24 farms
- You need to know the Farm effect to estimate P[infect]
- Can we say anything about Farms not in the data set?
- Yes, if we can assumes that the 24 study Farms are a simple random sample from a population of farms (e.g. in all of Spain)
- Consider farm a random effect

$$Y_{ij} \sim Bernoulii(\pi_{ij})$$
 $\log \pi_{ij} = \mu + \alpha_i + \beta I_{ij}$
 $\alpha_i \sim N(0, \sigma_F^2)$

• where $i \in \{1, 2, ..., 24\}$ indexes farms, $j \in \{1, 2, ..., n_i\}$ indexes deer within farm:

- Three general approaches to fitting this model
 - GLMM by maximum likelihood
 - @ GLMM using Bayesian methods, particularly MCMC
 - Generalized Estimating Equations
- The likelihood approach (regular ML, not REML)
 - Evaluate that untractable integral $\int_{u} f(Y|u)f(u)du$ by numerical approximation
 - Gaussian quadrature: intelligent version of the trapezoid rule
 - 2 Laplace approximation: Gaussian quadrature with 1 point
 - Or avoid the integral by quasilikelihood
 - Penalized Quasi-likelihood: Taylor expansion of $g^{-1}(X\beta + Zu)$
 - Pseudolikelihood: similar
 - Inference about b conditional on Σ

Bayesian methods

- Evaluate that integral by Markov-Chain Monte-Carlo methods
- Require specifying appropriate prior distributions for parameters
- Hierarchical structure to the model very appropriate for Bayesian methods
- Provides marginal inference about b
 i.e., includes the uncertainty associated with estimation of Σ

Generalized Estimating Equations

- Avoid the integral by ignoring (temporarily) the random effects
- Assume a convenient "working correlation matrix".
 e.g. independence
- Estimate parameters using the working correl. matrix
 - Estimates are not as efficient as those from model with the correct variance structure
 - But loss of efficiency often not too large
 - And estimates can be computed much more easily if assume independence
 - Real problem is the $\operatorname{Var}_W \hat{\beta}$ computed from the working correl. matrix: usually badly biased

- A better estimator of Var $\hat{\boldsymbol{b}}$:
- Remember Var $\hat{\beta}$ when Σ misspecified:

$$\operatorname{Var} \hat{\boldsymbol{b}} = (\boldsymbol{X}'\boldsymbol{X})^{-}\boldsymbol{X}'\boldsymbol{\Sigma}\boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-}$$
$$= \frac{\operatorname{Var}_{\mathbf{W}}\hat{\boldsymbol{b}}}{\sigma^{2}}\boldsymbol{X}'\boldsymbol{\Sigma}\boldsymbol{X}\frac{\operatorname{Var}_{\mathbf{W}}\hat{\boldsymbol{b}}}{\sigma^{2}}$$

- Imagine there is an estimate of Σ, call it C, usually computed from replicate data
- Use the mis-specified variance estimator to patch-up $\hat{\beta}$:

$$\operatorname{Var} \hat{\boldsymbol{b}} = \frac{\operatorname{Var}_{\mathrm{W}} \hat{\boldsymbol{b}}}{\sigma^2} \boldsymbol{X}' \boldsymbol{C} \boldsymbol{X} \frac{\operatorname{Var}_{\mathrm{W}} \hat{\boldsymbol{b}}}{\sigma^2}$$

- Sometimes called the Sandwich estimator (bread, filling, bread)
- Same idea, but many more details and different equations for GLMM

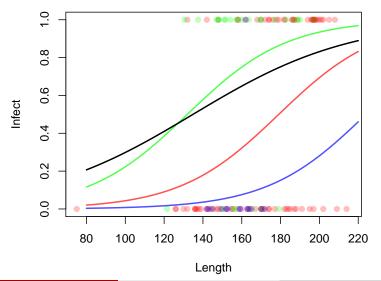
Marginal or conditional inference

 There is a major, important difference between the model fit by GEE and the model fit by GLMM

GLMM
$$\mathbf{E} \mathbf{Y} | \mathbf{u} = g^{-1} (\mathbf{X} \boldsymbol{\beta} + \mathbf{Z} \mathbf{u})$$
 (1)

GEE E
$$\mathbf{Y} = g^{-1}(\mathbf{X}\beta)$$
 (2)

- (1) models the conditional mean of Y given the random effects Influence of length deer randomly selected within a farm
- (2) models the marginal mean of Y
 Influence of length on deer randomly selected from the population
- These are the same for identity link, $g^-(x) = x$, usually used with normal distributions
- Not the same for other link functions (logit, log)

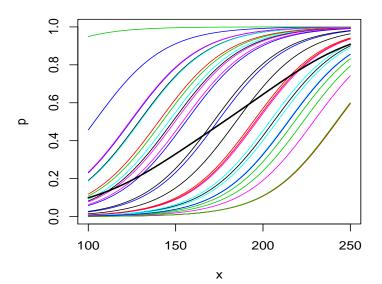


Results from various estimation methods

Method	Interc	ept	Slope		
	estimate	se	estimate	se	
Logistic Regr.	-3.30	0.946	0.0245	0.0056	
GEE (naive)	-3.90	0.920	0.0288	0.0056	
GEE (fixed)		1.132		0.0071	
LR w/farm			0.0391	0.0076	
GLMM (Laplace)	-5.03	1.273	0.0374	0.0072	
GLMM (Gauss Q)	-5.03	1.273	0.0374	0.0072	
GLMM (Resid PL)	-4.87	1.246	0.0357	0.0071	

• Big difference is between marginal and conditional models

- So which is the right approach?
- My answer is that it depends on goal of study.
- Sometimes called population averaged and subject-specific models
- This helps identify most appropriate method for specific goal
- Example: influence of cholesterol on P[heart attack]
- Data are observations on individuals made every 3 months: (Chl at start of period, Heart attack during period?)
- Two slightly different questions
 - If I change my diet and reduce my cholesterol from 230 to 170, how much will I reduce my probability of a heart attack? want conditional = subject specific estimate of log odds
 - Public health official: If we implement a nationwide program to reduce cholesterol from 230 to 170, how much will we reduce the number of heart attacks?
 - # heart attacks = $P[heart attack] \times population size$ want marginal = population averaged estimate of log odds



Computing for GLMM's

- Only code for fitting a GLMM is included here
- All the code to produce the plots in this section is in deer2.r on the class web site

```
deer <- read.csv('deer.csv',as.is=T)</pre>
deer$farm.f <- factor(deer$Farm)
library(lme4)
# use glmer() to fit GLMM.
# Farm is a unique identifier for a cluster;
# does not need to be a factor
deer.glmm <- glmer(infect~Length+(1|Farm),</pre>
   data=deer, family=binomial)
# default in glmer() is ML estimation.
```

Computing for GLMM's

```
# have all the lmer() helper functions
# coef(), fixef(), vcov()
# summary(), print()
# anova()
# full list found in ?mer (look for Methods)
  default is Laplace approximation
#
   shift to Gaussian quadrature by specifying
#
   nAGQ = # quadrature points
deer.glmm2 <- glmer(infect~Length+(1|Farm),</pre>
  data=deer, family=binomial, nAGQ = 5)
```

Computing for GEE's

```
GEE is in the gee library
  arguments are formula, data, and family as in qlm()
#
   id=variable has a unique value for each cluster
#
   DATA must be sorted by this variable
#
   help file implies any type of variable will work,
#
     but my experience is that this needs to be a
#
   number or a factor
deer <- deer[order(deer$Farm),]</pre>
deer.gee <- gee(infect~Length, id=farm.f, data=deer,</pre>
  family=binomial, corstr='exchangeable')
# then the working correlation matrix, as corstr =
# I used exchangeable = Compound symmetry to get the
#
     results shown in lecture
```

Computing for GEE's

```
#
  even though the lecture material focused on
#
     independence. Results are not quite the same
#
  General advice about GEE is to use a working
#
     correlation close to the suspected true
     correlation model, that's exchangeable here
 summary() produces a lot of output here because
    it prints the working correl matrix for the
   largest cluster. That's 83x83 for the deer data.
# just get the coefficients part
summary (deer.gee) $coeff
```

Nonlinear Models

- So far the models we have studied this semester have been linear in the sense that our model for the mean has been a linear function of the parameters.
- We have assumed $E(y) = X\beta$
- $f(X_i, \beta) = X_i'\beta$ is said to be linear in the parameters of β because $X_i'\beta = X_{i1}\beta_1 + X_{i2}\beta_2 + \ldots + X_{ip}\beta_p$ is a linear combination of $\beta_1, \beta_2, \ldots, \beta_p$.
- $f(X_i, \beta) = X_i'\beta$ is linear in β even if the predictor variables, the X's are nonlinear functions of other variables.

For example, if

$$X_{i1} = 1$$

 X_{i2} = Amount of fertilizer applied to plot i

 $X_{i3} = (\text{Amount of fetrtilizer applied to plot i})^2$

 $X_{i4} = \log(\text{Concentration of fungicide on plot i})$

- $f(\mathbf{X}_i, \boldsymbol{\beta}) = \mathbf{X}_i' \boldsymbol{\beta} = X_{i1} \boldsymbol{\beta}_1 + X_{i2} \boldsymbol{\beta}_2 + X_{i3} \boldsymbol{\beta}_3 + X_{i4} \boldsymbol{\beta}_4$ = $\boldsymbol{\beta}_1 + \text{fert}_i \boldsymbol{\beta}_2 + \text{fert}_i^2 \boldsymbol{\beta}_3 + \log((\text{fung})_i) \boldsymbol{\beta}_4$ is still linear in the parameters $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_4$.
- Now, we consider nonlinear models for the mean $E(y_i)$.
- These are models where $f(X_i, \beta)$ cannot be written as a linear combination of $\beta_1, \beta_2, ..., \beta_D$
- Small digression: What about models that can be transformed to be linear in the parameters?

linearizing a non-linear model

Example: Michaelis-Menton enzyme kinetics model

$$v_{s} = \frac{v_{m}S}{S + K_{m}}$$

- S is concentration of substrate, v_s is reaction rate at S v_m is maximum reaction rate,
 K_m is enzyme affinity= S at which v_s = v_m/2
- Function is mathematically equivalent to:
 - Lineweaver-Burke:

$$\frac{1}{v_s} = \frac{1}{v_m} + \frac{K_m}{v_m} \frac{1}{S}$$

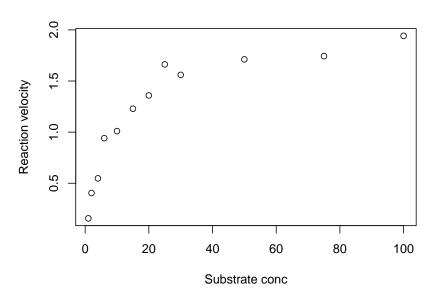
Linear regression of $Y = 1/v_s$ on X = 1/S

• Hanes-Woolf:

$$\frac{S}{v_s} = \frac{K_m}{v_m} + \frac{1}{v_m}S$$

Linear regression of $Y = S/v_s$ on X = S

Both are linear regressions



- However, the estimators of v_m and K_m derived from each model are not the same
- Illustrate numerically: LS estimates from each model

Model	$\hat{eta}_{f 0}$	$\hat{eta}_{ extsf{1}}$	v _m	\hat{v}_m	K_m	\hat{K}_m
nonlin				2.05		9.12
L-B	0.377	5.64	$1/\beta_0$	2.65	β_1/β_0	14.96
H-W:	4.74	0.482	$1/\beta_1$	2.07	β_0/β_1	9.83

- Why?
- Because the statistical model adds a specification of variability to the mathematical model, e.g.

$$v_i = \frac{v_m S_i}{S_i + K_m} + \varepsilon_i, \qquad \varepsilon_i \sim (0, \sigma^2)$$

And

$$v_i = \frac{v_m S_i}{S_i + K_m} + \varepsilon_i, \qquad \varepsilon_i \sim (0, \sigma_1^2)$$
 (3)

is not the same as

$$\frac{1}{v_1} = \frac{1}{v_m} + \frac{K_m}{v_m} \frac{1}{S_i} + \epsilon_i, \qquad \epsilon_i \sim (0, \sigma_2^2)$$
 (4)

- If you work out all the details, (2) is equivalent to (1) with unequal variances
- The statistical models for MM, L-B, and H-W are different
- Estimates differ because
 - Different variance models
 - · Leverage of specific observations is not the same

linearizing a non-linear model: 2nd example

Exponential growth model

$$Y_i = \beta_0 e^{\beta_1 T_i}$$

Nonlinear form, constant variance:

$$Y_i = \beta_0 e^{\beta_1 T_i} + \varepsilon_i, \qquad \varepsilon_i \sim (0, \sigma_1^2)$$

Linearized form, constant variance, normal dist.:

$$Y_i^* = \log Y_i = \log \beta_0 + rT_i + \epsilon_i, \qquad \epsilon_i \sim N(0, \sigma_2^2)$$

Statistically equivalent to

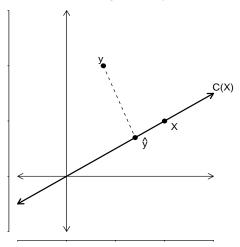
$$Y_i = \beta_0 e^{\beta_1 T_i} \times e^{\epsilon_i}, \qquad \epsilon_i \sim N(0, \sigma_2^2)$$

• i.e., errors are multiplicative log normal with constant lognormal variance

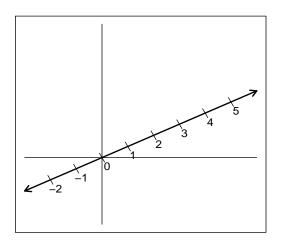
- Three classes of models:
 - Linear
 - 2 Transformable to linear, e.g. MM or exp. growth
 - Intrinsically nonlinear, e.g. $Y(t) = N_1 e^{-r_1 T} + N_2 e^{-r_2 T}$
- Why would we want to consider a nonlinear model?
- Pinheiro and Bates (2000) give some reasons:
 - mechanistic based on theoretical considerations about the mechanism producing the response.
 - 2 often interpretable and parsimonions
 - on be valid beyond the range of the observed data.
- I add: because the implied variance model (usually constant variance for untransformed observations) may be more appropriate for the data

Geometry of nonlinear least squares

Remember the geometry of LS for a linear model



• Add β values to C(X)



- Example 3: A 1 parameter nonlinear model
- Classic data set, "Rumford" data: how quickly does a cannon cool?
- 15'th 19'th century cannons made by forging a big piece of metal, then boring out the tube in the middle.
- Boring generates a lot of heat. Doesn't work if the cannon gets too hot. Have to stop and wait for cannon to cool
- Count Rumford: how long does this take? Developed the physics leading to:

$$Y_i = T_{env} + (T_{init} - T_{env})e^{-rX_i}$$

- T_{env} and T_{init} are temp in the environment and cannon's initial temperature, Y_i is temp at time X_i
- Collected data to see if this model was appropriate.
 Cannon heated to 130 F. Environment is 60 F. Measured temp at set times.

$$Y_i = 60 + 70e^{-rX_i}$$

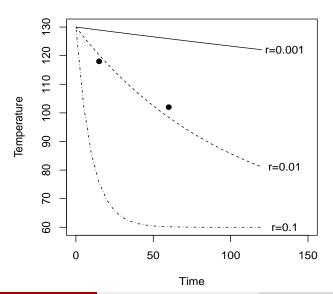
Assume errors in temperature measurement have constant variance

$$Y_i = 60 + 70e^{-rX_i} + \epsilon_i, \qquad \epsilon_i \sim (0, \sigma^2)$$

- Equation is non-linear in the parameter, r
- But, least squares is still a reasonable way to define an estimator
- Estimate *r* by finding the *r* that minimizes

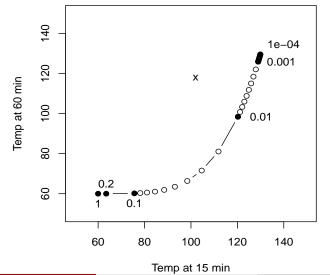
$$L(r) = (Y_i - \hat{Y}(r)_i)^2 = (Y_i - (60 + 70e^{-rX_i}))^2$$

Consider fitting this model to two data points: (15,118), (60, 102)



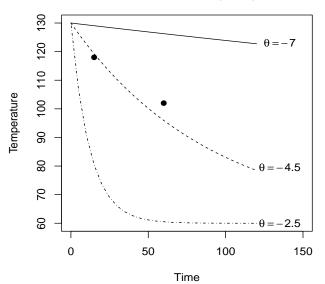
The expectation surface, $(\hat{Y}(r)_{X=15}, \hat{Y}(r)_{X=60})$,

- Expectation surface is curved
- Points not equally spaced (considered as function of r)



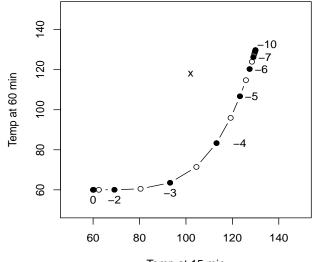
• Can write the same nonlinear model using different parameters.

$$Y_i = 60 + 70e^{-e^{\theta}X_i} + \epsilon_i, \ \epsilon_i \sim (0, \sigma^2), \qquad \theta = \log r$$



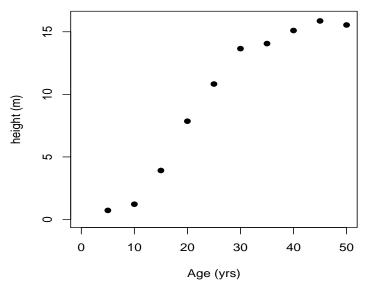
The expectation surface, $(\hat{Y}(\theta)_{X=15}, \hat{Y}(\theta)_{X=60})$,

- Expectation surface is same manifold
- ② But spacing of points not the same (more evenly spaced for θ)



- \hat{Y} is still the closest point on the expectation surface.
- LS estimate of r is the parameter corresponding to that point
- But the geometry is (or can be) very different
 - May be more than one closest point.
 - Residual vector may not be perpendicular to (the tangent line) to the expectation surface, e.g., (15,135), (60,132)
- Advanced discussions on nonlinear regression consider consequences of two types of curvature
 - Parameter effect curvature: deviation from equal spacing along expectation surface
 Can reduce by reparameterizing model
 - Intrinsic curvature: curvature of expectation surface Characteristic of model

- Example 4: Logistic Growth Model
- y_i is the height of a tree at age X_i (i = 1, ..., n)

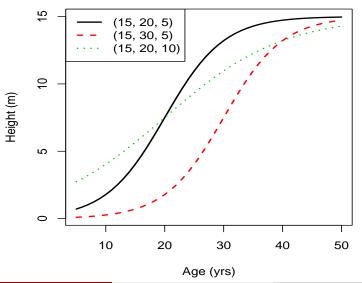


- Want a model in which:
 - trees grow slowly, then quickly, then slowly
 - trees have constant final height
 - the final height needs to be estimated
- One (of many) asymptotic growth models is the 3 parameter logistic

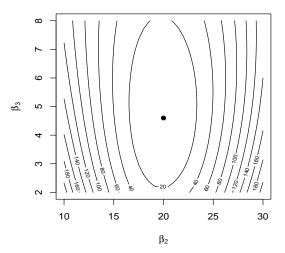
$$E(y_i) = f(X_i, \beta) = \frac{\beta_1}{1 + e^{-(X_i - \beta_2)/\beta_3}}$$

- Interpretation of parameters:
 - β_1 is final height
 - β_2 is age at which height is $\beta_1/2$
 - eta_3^- is the growth rate, # years to grow from 0.5 eta_1 to $eta_1/(1+e^{-1}) \approx 0.73eta_1$
- Statistical model:

$$y_i = f(X_i, \beta) + \epsilon_i$$
, $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$, $i = 1, ..., n$



- Least Squares Estimation $y_i = f(X_i, \beta) + \epsilon_i$ i = 1, ..., n
- Find $\hat{\boldsymbol{\beta}}$ that minimizes $g(\boldsymbol{b}) = \sum_{i=1}^{n} [y_i f(\boldsymbol{X}_i, \boldsymbol{b})]^2$



• Candidate $\hat{\beta}$ is the solution to the estimating equations:

$$\frac{\partial g(\textbf{\textit{b}})}{\partial \textbf{\textit{b}}} = \textbf{0}$$

These are:

$$\frac{\partial g(\mathbf{b})}{\partial \mathbf{b}_{1}} = 2 \sum_{i=1}^{n} [y_{i} - f(\mathbf{X}_{i}, \mathbf{b})] \frac{\partial f(\mathbf{X}_{i}, \mathbf{b})}{\partial \mathbf{b}_{1}}$$

$$\vdots$$

$$\frac{\partial g(\mathbf{b})}{\partial \mathbf{b}_{p}} = 2 \sum_{i=1}^{n} [y_{i} - f(\mathbf{X}_{i}, \mathbf{b})] \frac{\partial f(\mathbf{X}_{i}, \mathbf{b})}{\partial \mathbf{b}_{p}}$$

Can write as a matrix equation

• Define
$$f(\boldsymbol{X}, \boldsymbol{b}) = \begin{bmatrix} f(\boldsymbol{X}_1, \boldsymbol{b}) \\ \vdots \\ f(\boldsymbol{X}_n, \boldsymbol{b}) \end{bmatrix}$$

And

$$D' = \begin{bmatrix} \frac{\partial f(\mathbf{X}_1, \mathbf{b})}{\partial b_1} & \cdots & \frac{\partial f(\mathbf{X}_n, \mathbf{b})}{\partial b_1} \\ \vdots & & \vdots \\ \frac{\partial f(\mathbf{X}_1, \mathbf{b})}{\partial b_p} & \cdots & \frac{\partial f(\mathbf{X}_n, \mathbf{b})}{\partial b_p} \end{bmatrix}$$

Then $\frac{\partial g(\boldsymbol{b})}{\partial \boldsymbol{b}} = \mathbf{0}$ is equivalent to $D'[\boldsymbol{y} - f(X, \boldsymbol{b})] = \mathbf{0}$

• In the linear case, D' = X' and $D'[\mathbf{y} - f(X, \mathbf{b})] = \mathbf{0}$ becomes $X'[\mathbf{y} - X\mathbf{b}] = \mathbf{0} \Rightarrow X'X\mathbf{b} = X'\mathbf{y}$

- In the nonlinear case, D' depends on β so that the equation $D'[\mathbf{y} f(X, \mathbf{b})] = \mathbf{0}$ has (usually) no analytic solution for \mathbf{b}
- For example, for the logistic model,

$$\frac{\partial f(\mathbf{X}_{i}, \beta)}{\partial \beta_{1}} = \frac{1}{1 + \exp\{-(X_{i} - \beta_{2})/\beta_{3}\}}
\frac{\partial f(\mathbf{X}_{i}, \beta)}{\partial \beta_{2}} = \frac{-\beta_{1} \exp\{-(X_{i} - \beta_{2})/\beta_{3}\}}{[1 + \exp\{-(X_{i} - \beta_{2})/\beta_{3}\}]^{2}\beta_{3}}
\frac{\partial f(\mathbf{X}_{i}, \beta)}{\partial \beta_{3}} = \frac{-\beta_{1} \exp\{-(X_{i} - \beta_{2})/\beta_{3}\}(X_{i} - \beta_{2})}{[1 + \exp\{-(X_{i} - \beta_{2})/\beta_{3}\}]^{2}\beta_{3}^{2}}$$

- Various algorithms to find minimum analytically
- Very common one for nonlinear regression is the Gauss-Newton algorithm
- Taylor's theorem:

$$f(\boldsymbol{x}_i, \boldsymbol{b}) \approx f(\boldsymbol{x}_i, \boldsymbol{b}^*) + \left[\frac{\partial f(\boldsymbol{x}_i, \boldsymbol{b})}{\partial \boldsymbol{b}} |_{\boldsymbol{b} = \boldsymbol{b}^*} \right] (\boldsymbol{b} - \boldsymbol{b}^*)$$

• So E $\mathbf{Y} = f(\mathbf{X}, \boldsymbol{\beta})$ can be approximated by

$$f(X, \boldsymbol{b}) \approx f(X, \boldsymbol{b}^*) + \hat{D}(\boldsymbol{b} - \boldsymbol{b}^*),$$

where \hat{D} is D evaluated at $\boldsymbol{b} = \boldsymbol{b}^*$.

• Notice this is a linear regression where \boldsymbol{X} is \hat{D}

$$f(X, \mathbf{b}) \approx f(X, \mathbf{b}^*) - \hat{D}\mathbf{b}^* + \hat{D}\mathbf{b}$$

 $\approx \text{constant} + \hat{D}\mathbf{b}$

- Gauss-Newton algorithm
 - Ohoose a starting value, **b**₀
 - 2 Calculate D for $\boldsymbol{b} = \boldsymbol{b}_0$
 - Estimate b using approximating linear model
 - Call this b₁
 - **5** Calculate D for $\mathbf{b} = \mathbf{b}_1$
 - Repeat steps 3-5 until convergence
- Various ways to define convergence
 - Little to no change in b after an iteration "not making progress" convergence
 - 2 Little to no change in SSE, $g(\mathbf{b})$, after an iteration "not making progress" convergence
 - **3** $\frac{\partial g(\mathbf{b})}{\partial \mathbf{b}}$ evaluated at \mathbf{b}_i is sufficiently close to 0 "close to goal" convergence

- Choice of starting value can really matter
- Nice to have a starting value close to the overall minimizer
 - Taylor expansion is a close approximation to the nonlinear function, so convergence will be quick
 - less likely to get stuck at some local minimum.
- Good idea to try multiple starting values.
- Would like to get to same solution from each starting value
- Often implementations of the G-N algorithm impose a maximum number of iterations. Often 50 or 100.
- If doesn't converge, try different starting value or increase the number of iterations
- Relaxing the convergence criterion is something to be used only if really desperate.
 - Reported "solution" may be close, but probably not.

- Continue iterating until some convergence criterion is met.
- Possible convergence criteria:
 - $\sum |\beta^r \beta^{r-1}| < \text{small constant}$
 - $\max_{j=1,\dots,p} \frac{|b_j^{(r)}-b_j^{(r-1)}|}{|b_i^{(r-1)}+\epsilon|} < \text{small constant.}$
 - $g(\boldsymbol{b}^{(r-1)}) g(\boldsymbol{b}^{(r)}) < \text{small constant}$
 - \sum abs $\left(\frac{\partial g(b)}{\partial b}|_{b=b^{(r)}}\right) <$ small constant

Normal Theory Inference

- Add assumption of normal distribution to our error model
- The model is now:

$$y_i = f(\boldsymbol{x}, \boldsymbol{\beta}) + \epsilon_i, \ i = 1, ..., n, \ \epsilon_1, ..., \epsilon_n \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

- Let $\hat{\beta}$ be the least squares estimate of β
- If n sufficiently large,

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2(\hat{D}'\hat{D})^{-1}),$$

where \hat{D} is D evaluated at $\hat{\beta}$

- because if n large, $f(\mathbf{x}, \mathbf{b}) \approx \text{constant} + \hat{D}\mathbf{b}$ where \hat{D} is D evaluated at \mathbf{b}
- $\sigma^2(\hat{D}'\hat{D})^{-1}$ can be estimated by $MSE(\hat{D}'\hat{D})^{-1}$, where \hat{D} is D evaluated at $\hat{\beta}$

- MSE is estimated in the obvious way
 - Define p = number of parameters
 - $MSE = \frac{SSE}{n-p}$.
 - $SSE = g(\hat{\beta}) = \sum_{i=1}^{n} [y_i f(X_i, \hat{\beta})]^2$.
- For n sufficiently large, $\frac{(n-\rho)\mathsf{MSE}}{\sigma^2} = \frac{\mathsf{SSE}}{\sigma^2} \sim X_{(n-\rho)}^2$
- All the linear model inference follows, using \hat{D} as the "X" matrix
- An approximate F-test $H_0: C\beta = \mathbf{0}$ rejects H_0 at level α if and only if $F = \frac{\hat{\beta}'C'[C(\hat{D}'\hat{D})^{-1}C']^{-1}C\hat{\beta}/q}{\mathsf{MSE}} \geq F_{q,n-p}^{(\alpha)}$ where $q = \mathsf{rank}(c) = \mathsf{number}$ of rows of C
- An approximate $100(1-\alpha)\%$ confidence interval for $\mathbf{C}'\beta$ is

$$m{C}'\hat{m{eta}} \pm t_{n-m{p}}^{lpha} \sqrt{\mathsf{MSE}~m{C}'(\hat{m{D}}'\hat{m{D}})^{-1}m{C}}$$

 We also have approximate F tests for reduced vs. full model comparisons:

$$F = \frac{(SSE_{reduced} - SSE_{full})/(df_{reduced} - df_{full})}{SSE_{full}/df_{full}} \overset{H_0}{\sim} F_{df_{reduced}} - df_{full}, df_{full}$$

• For example, consider a test of $H_0: \beta_1 = \beta_{10}$ vs. $H_A: \beta_1 \neq \beta_1 0$ for some fixed β_{10} . Let $\beta_2 = \begin{bmatrix} \beta_2 \\ \vdots \\ \beta_p \end{bmatrix}$. Let

$$f_0(\boldsymbol{X}, \boldsymbol{\beta}_2) = f(\boldsymbol{X}, \begin{bmatrix} \boldsymbol{\beta}_{10} \\ \boldsymbol{\beta}_2 \end{bmatrix})$$

• Then the reduced model is

$$y_i = f_0(\boldsymbol{X}_i, \boldsymbol{\beta}_2) + \epsilon_i \ i = 1, ..., n \ \epsilon_1, ..., \epsilon_n \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

ullet Then $F(eta_{10})\equiv rac{SSE_{reduced}-SSE_{full}}{MSE_{full}}\stackrel{H_0}{\sim} F_{1,n-p}$

Confidence intervals

- Two ways to get a confidence interval for β_1
 - Wald interval:

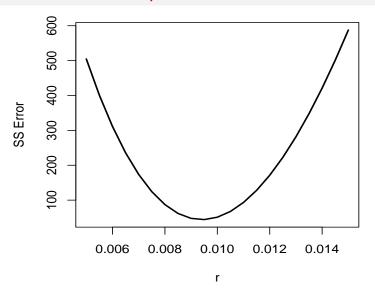
$$\hat{eta}_1 \pm t_{n-p}^{lpha} \sqrt{\mathsf{MSE}\,(\hat{D}'\hat{D})^{-1}}$$

- 2 "profile" interval:
 - Consider all β_{10} . Include in 1 $-\alpha$ confidence interval all those β_{10} for which the F test accepts Ho: $\beta_1 = \beta_{10}$ at level α .
 - The set $\left\{\beta_{10}: F_{(\beta_{10})} \leq F_{1,n-p}^{(\alpha)}\right\}$ is an approximate $100(1-\alpha)\%$ confidence set for β_1 .
- Same interval for linear models
- Not the same for a nonlinear model
- Reparameterization of β , e.g. $\exp \beta$, changes Wald interval. No effect on profile interval.
- Wald interval assumes SSE surface quadratic around estimate
- Wald intervals commonly used because they're easier to compute.
 For careful work, use profile intervals.

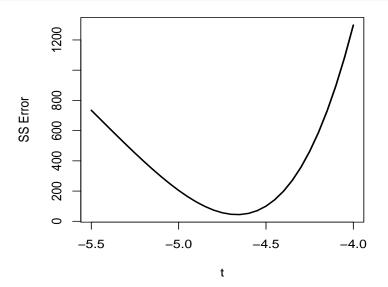
- Example: Confidence interval for Rumford temperature change
- Model 1: $temp_i = 60 + 70 \times exp(-r * time_i) + \epsilon_i, \ , \epsilon_i \sim N(0, \sigma^2)$
- Fit to Rumford data: $\hat{r} = 0.0094$, se $\hat{r} = 0.00042$, rMSE = 1.918
- Model 2: $temp_i = 60 + 70 \times exp(-exp(t) * time_i) + \epsilon_i, \ , \epsilon_i \sim N(0, \sigma^2)$
- Fit to Rumford data: $\hat{t} = -4.665$, se $\hat{t} = 0.044$, rMSE = 1.918, $\exp(-4.665) = 0.0094$

Data	Model	Wald interval	Profile interval
Rumford	1	(0.0085, 0.0103)	(0.0085, 0.0103)
	2	(-4.762, -4.568)	(-4.767, -4.571)
		(0.0085, 0.0104)	(0.0085, 0.0103)
Noisy	1	(0.0084, 0.0168)	(0.0087, 0.0171)
	2	(-4.702, -4.044)	(-4.746, -4.071)
		(0.0091, 0.0175)	(0.0087, 0.0171)

Profile SS Error for *r* parameterization



Profile SS Error for $t = \exp(r)$ parameterization



A useful property of nonlinear models

- Consider a model: $E \mathbf{Y} = f(\mathbf{X}, \boldsymbol{\beta})$
- $\hat{\beta}$ satisfies the normal equations: $D'[Y f(X, \beta)] = 0$ where D' is the matrix of partial derivatives with respect to β
- And Var $\beta = MSE(D'D)^{-1}$
- The real interest is in a new set of parameters computed from β : Call these α , where $\alpha_i = g_i(\beta)$
- Using invariance of MLE's: $\hat{\alpha}_i = g_i(\hat{\beta})$
- How to obtain variance-covariance matrix of $\hat{\alpha}$?
- Define G as the matrix of partial derivatives of α with respect to β .

$$G_{ij} = rac{\partial lpha_i}{\partial eta_i}$$

- Two ways:
 - **1** Delta method: Var $\alpha = G \text{ Var } \beta G'$
 - 2 Fit a model using the α parameterization, i.e.

$$\mathbf{y} = f^*(\mathbf{X}, \boldsymbol{\alpha}) = f(\mathbf{X}, g(\beta))$$

- The variances are exactly the same. Can prove using chain rule.
- One of the models may be linear, but usually at least one model is nonlinear.
- Remember that inference either using the delta method or using nonlinear regression is only asymptotic.

- Example: location of minimum/maximum of a quadratic function
- $Y_i = \beta_0 + \beta_1 X_i + \beta_2^2 X_i^2 + \varepsilon_i$
- Estimated location of min/max is $X_m = -\beta_1/(2\beta_2)$
- Can estimate X_m = location of min/max and its asymptotic variance directly by fitting the nonlinear model

$$Y_i = \beta_0 + \beta_2 (X_i - X_m)^2 + \varepsilon_i$$

- Wald confidence interval matches Delta method ci from linear regression
- Profile confidence interval performs better

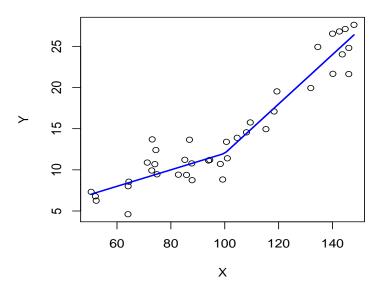
Change-point models

- Short detour through regression models with dummy variables
- We've seen indicator (0/1) variables used to represent group-specific means, group-specific intercepts, and groups-specific slopes
- They are also used in "change-point" problems.
- Suppose we are relating Y and x and expect a change in slope at x = 100. A possible model is

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 (x_i - 100) z_i + \epsilon_i$$

where $z_i = 1$ if $x_i > 100$ and 0 otherwise

• $E(Y|x) = \beta_0 + \beta_1 x$ (for $x \le 100$) $E(Y|x) = \beta_0 + \beta_1 x + \beta_2 (x - 100)$ (for x > 100) slope changes from β_1 to $\beta_1 + \beta_2$ at x = 100



ullet if change point is unknown then can replace 100 by parameter au

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 (x_i - \tau) I(x_i > \tau) + \epsilon_i$$
 (5)

- E $Y_i \mid x_i$ is a non-linear function of τ ; need non-linear regression to estimate $\hat{\tau}$.
- A common variation is "segmented" regression: second part is flat

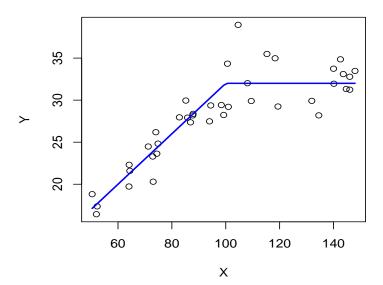
$$EY_{i} = \begin{cases} \beta_{0} + \beta_{1}X_{i} & X_{i} \leq \tau \\ \beta_{0} + \beta_{1}\tau & X_{i} > \tau \end{cases}$$
 (6)

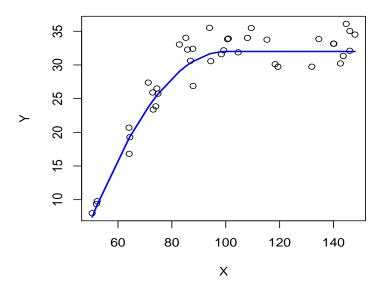
$$EY_i = \beta_0 + \beta_1 x_i (1 - z_i) + \beta_1 \tau z_i$$

- ullet If au unknown, need one of these two forms and NL regression
- If τ known, replace all $x_i > \tau$ with τ and use OLS
- Both (5) and (6) are continuous, but 1st derivative is not.

- Quadratic variation has continuous first derivative:
- Quadratic increase to maximum, then flat.
- Easiest to write in non-linear form

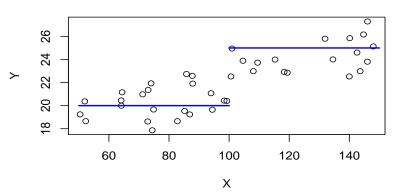
$$EY_i = \begin{cases} \beta_0 + \beta_1(\tau - x_i)^2 & x_i \leq \tau \\ \beta_0 & x_i > \tau \end{cases}$$





- "Change-point" model: E $Y_i \mid x_i$ "jumps" at τ .
- Trivial to estimate (2 means) if τ known. Use NL regression if need to estimate it.

$$EY_i = \beta_0 + \beta_1 I(x_i < \tau)$$



Computing for nonlinear models

```
rumf <- read.table('rumford.txt',header=T)</pre>
# fit non-linear model
# the formula gives the model
# start is a list of name=constants
# the names are the parameter names in the model
    (here only one, r)
  the constants are the starting values
#
     can also specify a vector of possible starting
#
     values for each parameter
  every variable in the model needs to either be
#
    a parameter, i.e. in the start list
#
    or a variable, i.e. in the data frame
```

© Dept. Statistics ()

start=list(r=0.01)

rumf.nls <- nls(temp $^{\sim}60 + 70*\exp(-r*time), data=rumf,$

Computing for nonlinear models

```
many helper functions, including:
   summary()
#
   coef(), vcov()
#
   logLik(), deviance(), df.residual()
#
   predict(), residuals()
#
   anova()
#
   each does the same thing as corresponding lm
#
     helper function except for anova:
#
     you need to provide the sequence of models
#
     e.g: evaluate exponential quadratic in time
rumf.nls2 <- nls(temp~60 + 70*exp(-r*time-r2*time^2),
  data=rumf, start=list(r=0.01, r2=-0.0001))
```

anova (rumf.nls, rumf.nls2)

Computing for nonlinear models

```
# estimated coefficients
coef(rumf.nls)
# profile ci's on parameters
confint(rumf.nls)
# residual vs predicted values plot
plot(predict(rumf.nls), resid(rumf.nls))
plot(predict(rumf.nls2), resid(rumf.nls2))
rumf.nls3 <- nls(temp~init + delta*exp(-r*time),
  data=rumf, start=list(r=0.01, init=60, delta=70))
```

Nonlinear mixed models

- Can add additional random variation to Nonlinear models
- Easy version: use additive random effects to model correlated observations

$$Y_{ij} = f(X_i, \beta) + u_i + \varepsilon_{ij}$$

- More flexible: values of β depend on subject
- First order compartment model with absorbtion
 e.g. swallow a pill with dose D, absorbed into blood, removed by kidneys
- Two compartments: stomach, blood
 A_s: amount in stomach, A_b: amount in blood

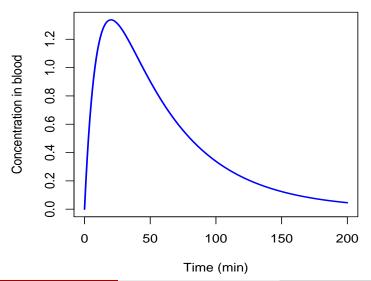
$$\frac{d A_s}{dt} = -k_a A_s$$

$$\frac{d A_b}{dt} = k_a A_s - k_e A_b$$

• Solution gives blood concentration, *C*(*t*), at time *t*:

$$C(t) = \frac{k_a k_e D}{V_c} \frac{(e^{-k_a t} - e^{-k_e t})}{k_e - k_a}$$

• Picture on next slide: D = 100, $k_a = 0.1$, $k_e = 0.02$, $V_c = 1$



Nonlinear mixed models

- Such models fit to data collected on one or more individuals over time
- Allow the parameters to vary among individuals
- Permits inference to unobserved individuals

$$E C(t) \mid [k_{ai}, k_{ei}, k_{Vi}]' = \frac{k_{ai}k_{ei}D}{V_{ci}} \frac{\left(e^{-k_{ai}t} - e^{-k_{ei}t}\right)}{k_{ei} - k_{ai}}$$

$$\begin{bmatrix} k_{ai} \\ k_{ei} \\ V_{ci} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} k_{a} \\ k_{e} \\ V_{c} \end{bmatrix}, \begin{bmatrix} \sigma_{a}^{2} & \sigma_{ae} & \sigma_{aV} \\ \sigma_{ae} & \sigma_{e}^{2} & \sigma_{eV} \\ \sigma_{aV} & \sigma_{eV} & \sigma_{V}^{2} \end{bmatrix} \end{pmatrix}$$

Often, parameters "better behaved" if modeled on log scale

- Same computational issues as with GLMM's
- No analytic marginal distribution for observations
- Same sorts of computational solutions:
 - Linearize the model (Pseudolikelihood approaches)
 - Approximate the likelihood (Laplace approx. or Gaussian quadrature)
 - Bayesian MCMC
- ASA webinar on these models and their use in Pharmacokinetic/Pharmacodynamic modeling

```
http://www.amstat.org/sections/sbiop/webinars/
WebinarSlidesBW11-08-12.pdf
```

```
Fit NLME to Theophylline data
#
  The Theoph object preloaded in R has all sorts of
#
    additional data associated with it. Here, I show
#
    you how to set up things from a raw data file
theoph <- read.csv('Theoph.csv',as.is=T)</pre>
 There are a variety of "Self-starting" pre-defined
#
    nonlinear functions.
#
    they simplify fitting non-linear models
  SSfol() is the one-compartment with clearance model
#
    uses log scale parameterization of all parameters
#
    the advantages of a self-start, is that
#
    1) you do not need to provide starting values
#
      when you use nls(), but you do with nlme()
    2) they calculate the gradient analytically
                                                     76 / 125
   © Dept. Statistics ()
                        Stat 511 - part 5
                                              Spring 2013
```

```
ls('package:stats',patt='SS')
# will list all the R self-start functions
# nlme requires the data frame to be a 'groupedData'
# object. This indicates the groups of
# independent observations
theoph.grp <- groupedData(conc ~ time | Subject,
  data=theoph)
# you need to indicate Y and the 'primary' X variable
# and most importantly the grouping variable as
# | Subject
# estimate parameters for one subject to
    get an approx. of starting values for the pop.
theoph.1 <- subset (theoph, Subject == 1)
subj.1 <- nls(conc~SSfol(Dose, Time, lKe, lKa, lCl),</pre>
              data = theoph.1)
```

```
theoph.m1 <- nlme(
  conc ~ SSfol(Dose, Time, 1Ke, 1Ka, 1Cl),
  data=theoph.grp,
  fixed = 1Ke + 1Ka + 1C1 ~ 1,
  random = 1Ke + 1Ka + 1C1 ~ 1,
  start=coef(subj.1) )
# If the parameters differed by (e.g.) sex, you
    would change to fixed = lKe + lKa + lCl ~ sex,
# If the variance/covariance matrix varied by
    sex, use random = 1 \text{Ke} + 1 \text{Ka} + 1 \text{Cl} \sim \text{sex},
summary (theoph.m1)
# other helper functions are fitted(), predict()
# random.effects(), residuals()
```

```
# models for correlation among observations using
# corClasses and model heterogeneity in
# variances (see varClasses and varPower)
# There are also a variety of interesting/useful
# plots for grouped data. See library(help=nlme)
```

nlme is extremely powerful. You can also fit

Nonparametric regression using smoothing splines

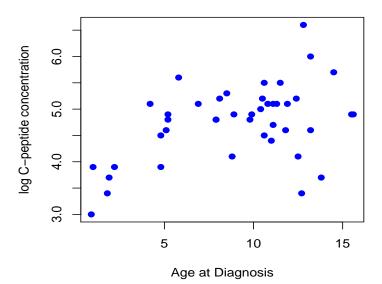
- Smoothing is fitting a smooth curve to data in a scatterplot
- Will focus on two variable problems: Y and one X
- Our model:

$$y_i = f(x_i) + \varepsilon_i,$$

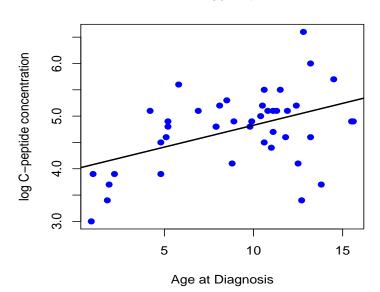
where $\varepsilon_1, \varepsilon_1, \dots \varepsilon_n$ are independent with mean 0

- f is some unknown smooth function
- Up to now f has a specified form with unknown parameters
 - f could be linear or nonlinear in the parameters,
 - functional form always specified
- If f not determined by the subject matter, we may prefer to let the data suggest a functional form

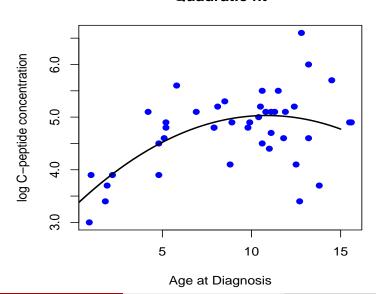
- Why estimate f?
 - can see features of the relationship between X and Y that are obscured by error variation
 - summarizes the relationship between X and Y
 - provide a diagnostic for a presumed parametric form
- Example: Diabetes data set in Hastie and Tibshirani's book Generalized Additive Models
- Examine relationship between age of diagnosis of diabetes and log of the serum C-peptide concentration
- Here's what happens if we fit increasing orders of polynomial, then fit an estimated f



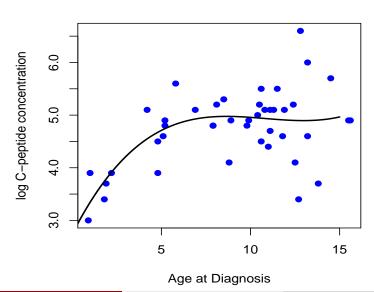
linear fit



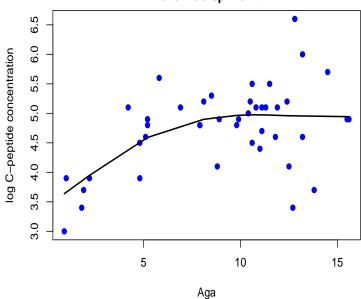
Quadratic fit



Cubic fit



Penalized spline fit



- A slightly different way of thinking about Gauss-Markov Linear models:
 - If we assume that f(x) is linear, then $f(x) = \beta_0 + \beta_1 x$
 - In terms of the Gauss-Markov Linear Model $\mathbf{y} = X\beta + \epsilon$,

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \text{ and } \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

• The linear model approximates f(x) as a linear combination of two "basis" functions: $b_0(x) = 1$, $b_1(x) = x$,

$$f(x) = \beta_0 b_0(x) + \beta_1 b_1(x)$$

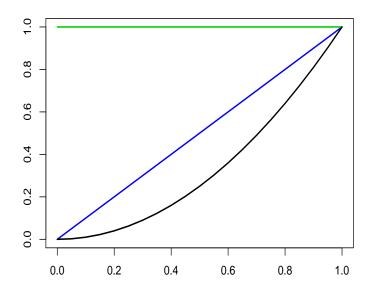
- If we assume that f(x) is quadratic, then $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$.
- In terms of the Gauss-Markov Linear Model $\mathbf{y} = x\boldsymbol{\beta} + \epsilon$,

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix} \text{ and } \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

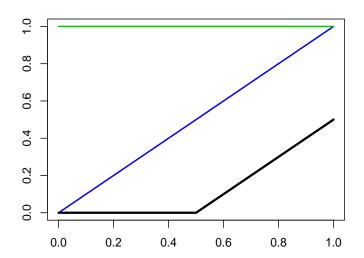
 The quadratic model tries to approximate f(x) as a linear combination of three basis functions:

$$b_0(x) = 1$$
, $b_1(x) = x$, $b_2(x) = x^2$

$$f(x) = \beta_0 b_0(x) + \beta_1 b_1(x) + \beta_2 b_2(x)$$



- Now consider replacing $b_2(x) = x^2$ with $S_1(x) = (x k_1)^+ \equiv \begin{cases} 0 & \text{if } x \le k_1 \\ x k_1 & \text{if } x > k_1 \end{cases}$ where k_1 is a specified real value.
- f(x) is now approximated by $\beta_0 b_0(x) + \beta_1 b_1(x) + u_1 S_1(x)$, where u_1 (like β_0 amd β_1) is an unknown parameter.

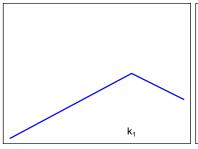


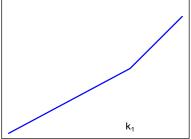
• Note that
$$\beta_0 b_0(x) + \beta_1 b_1(x) + u_1 S_1(x) = \beta_0 + \beta_1 X + u_1(x - k_1)^+$$

$$= \begin{cases} \beta_0 + \beta_1 x & \text{if } x \leq k_1 \\ \beta_0 + \beta_1 x + u_1(x - k_1) & \text{if } x > k_1 \end{cases}$$

$$= \begin{cases} \beta_0 + \beta_1 x & \text{if } x \leq k_1 \\ \beta_0 - u_1 k_1 + (\beta_1 + u_1) x & \text{if } x > k_1 \end{cases}$$

 This is clearly a continuous function (because it is a linear combination of continuous functions), and it is piecewise linear.

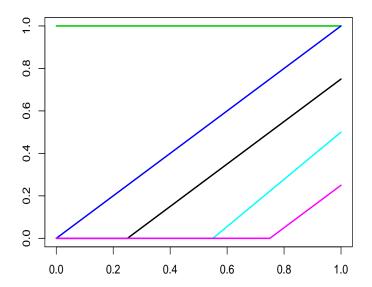


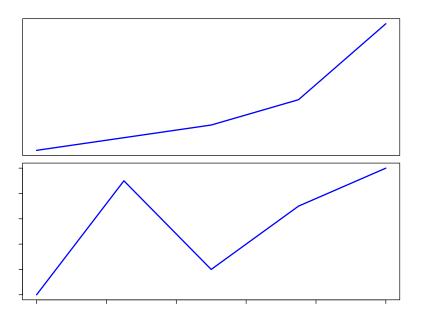


- The function $\beta_0 + \beta_1 x + u_1(x k_1)^+$ is a simple example of a linear spline function.
- The value k_1 is known as a knot.
- As a Gauss-Markov Linear Model, $\mathbf{y} = X\beta + \epsilon$,

$$X = \begin{bmatrix} 1 & x_1 & (x_1 - k_1)^+ \\ 1 & x_2 & (x_2 - k_1)^+ \\ \vdots & \vdots & & \vdots \\ 1 & x_n & (x_n - k_1)^+ \end{bmatrix} \text{ and } \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ u_1 \end{bmatrix}$$

• We can make our linear spline function more flexible by adding more knots $k_1, ..., k_k$ so that f(x) is approximated by $\beta_0 + \beta_1 x + \sum_{i=1}^k u_i s_i(x) = \beta_0 + \beta_1 x + \sum_{i=1}^k u_i (x - k_i)^+$





• If we assume $f(x) = \beta_0 + \beta_1 x + \sum_{j=1}^k u_j (x - k_j)^+$, we can write our model as the Gauss-Markov Linear Model $\mathbf{y} = X\beta + \epsilon$, where

$$X = \begin{bmatrix} 1 & x_1 & (x_1 - k_1)^+ & (x_1 - k_2)^+ ... (x_1 - k_k)^+ \\ 1 & x_2 & (x_2 - k_1)^+ & (x_2 - k_2)^+ ... (x_2 - k_k)^+ \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & (x_n - k_1)^+ & (x_n - k_2)^+ ... (x_n - k_k)^+ \end{bmatrix}$$

and $\beta = (\beta_0, \beta_1, u_1, u_2, ..., u_k)'$

- The OLS estimator of β is $(x'x)^{-1}x'y$. This is the BLUE of β , but this can often result in an estimate of f(x) that is too "wiggly" or "non-smooth".
- A "wiggly" curve corresponds to values of u₁, u₂,... u_k far from zero

Curve
$$\beta_1$$
 u_1 u_2 u_3 $\sum u_i^2$
Smoother 0.4 0.0 0.4 1.6 2.72
Wigglier 3.6 -6.4 4.8 -0.8 64.64

- If we really believe the true f(x) is a linear spline function with knots at $k_1, k_2, ..., k_k$, then $\hat{\beta} = (x'x)^{-1} \mathbf{y}$ is the best linear unbiased estimator of $(\beta_0, \beta_1, u_1, ..., u_k)'$.
- However, we usually think of our linear spline function as an approximation to the true f(x).
- Prefer a smoother (less flexible) estimate of f(x).
- This has u_i coefficients closer to 0
- Use penalized least squares to estimate a smoother curve.
- Find $\beta = (\beta_0, \beta_1, u_1, ..., u_k)'$ that minimizes $(\mathbf{y} \mathbf{x}\beta)'(\mathbf{y} \mathbf{x}\beta) + \lambda^2 \sum_{j=1}^k u_j^2$, where λ^2 is the smoothing parameter, and $\lambda^2 \sum_{j=1}^k u_j^2$ is the penalty for roughness (lack of smoothness).
- Combines two ideas: fit (SSE) and smoothness (penalty for roughness)

Finding the penalized LS estimate of $(\beta_0, \beta_1, u_1, ..., u_k)'$

• If we let D = diag(0,0,1,...,1) (k terms), then

$$(\mathbf{y} - \mathbf{x}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{x}\boldsymbol{\beta}) + \lambda^{2} \sum_{j=1}^{k} u_{j}^{2} = (\mathbf{y} - \mathbf{x}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{x}\boldsymbol{\beta}) + \lambda^{2}\boldsymbol{\beta}'D\boldsymbol{\beta}$$

$$= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{x}\boldsymbol{\beta} + \boldsymbol{\beta}'\mathbf{x}'\mathbf{x}\boldsymbol{\beta} + \lambda^{2}\boldsymbol{\beta}'D\boldsymbol{\beta}$$

$$= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{x}\boldsymbol{\beta} + \boldsymbol{\beta}'(\mathbf{x}'\mathbf{x} + \lambda^{2}D)\boldsymbol{\beta}$$

- Set derivatives with respect to β equal to 0
- estimating equations: $(x'x + \lambda^2 D)\beta \equiv x'y$
- solution: $\hat{\boldsymbol{\beta}}_{\lambda^2} = (x'x + \lambda^2 D)^{-1}x'\mathbf{y}$ for any fixed $\lambda^2 \geq 0$
- predicted values: $\hat{\boldsymbol{y}}_{\lambda^2} \equiv x \hat{\boldsymbol{\beta}}_{\lambda^2} = x(x'x + \lambda^2 D)^{-1}x'\boldsymbol{y}$

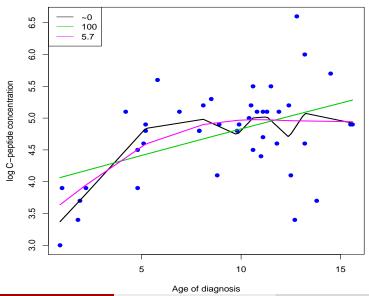
- You choose λ^2 and the knots $k_1, ..., k_k$.
- As $\lambda^2 \to 0$, $\hat{\boldsymbol{\beta}}_{\lambda^2} \to \hat{\boldsymbol{\beta}} = (x'x)^{-1}x'\boldsymbol{y}$. Small λ^2 results in non-smooth fit.
- $\bullet \ \, \text{As} \, \, \lambda^2 \to \infty, \boldsymbol{\hat{\beta}}_{\lambda^2} \to \left[\begin{array}{c} \boldsymbol{\hat{\beta}}_0 \\ \boldsymbol{\hat{\beta}}_1 \\ \boldsymbol{0} \end{array} \right]$

In the limit, $\lambda^2 \to \infty$ results in the least squares fit

- When f(x) is defined as $f(x) = \beta_0 + \beta_1 x + \sum_{j=1}^k u_j (x k_j)^+$, the resulting function is continuous but the 1st and 2nd derivatives are not.
- 1st and 2nd derivatives are undefined at the knots

A smoother smoother

- \bullet Next page: fitted penalized regression splines for 3 smoothing parameters: $\sim\!\!0,\,100,\,\text{and}\,5.7$
- 5.7 is the "optimal" choice, to be discussed shortly
- "optimal" curve is a sequence of straight lines
- continuous, but 1st derivative is not continuous
- Smoothed fits look "smoother" if continuous in 1st derivative and in 2nd derivative
- Suggests joining together cubic pieces with appropriate constraints on the pieces so that the 1st and 2nd derivatives are continuous
- Many very slightly different approaches
 - cubic regression splines (cubic smoothing splines)
 - thin plate splines

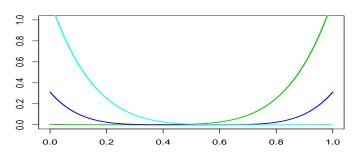


 We'll talk about thin plate splines because they provide an easy to implement way to fit multiple X's

$$E y = f(x_1, x_2)$$
 as well as $Ey = f(x_1) + f(x_2)$

• The degree 3 thin plate spline with knots at $(k_1, k_2, ..., k_K)$

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \sum_{i=1}^K u_k |x - k_i|^5$$



- How much to smooth?
 - i.e. what λ^2 ? or what u_k 's
 - reminder: 0 ⇒ no smoothing (linear or quadratic in tps) large ⇒ close fit to data points
- We'll talk about three approaches:
 - Cross validation
 - Generalized cross validation
 - Mixed models

Cross validation

- General method to estimate "out of sample" prediction error
- Concept: Develop a model, want to assess how well it predicts
- Might use rMSEP $\sqrt{\sum (y_i \hat{y}_i)^2}$ as a criterion.
- Problem: data used twice, once to develop model and again to assess prediction accuracy
- rMSEP systematically underestimates $\sqrt{\sum (y_i^* \hat{y}_i^*)^2}$, where y^* are new observations, not used in model development
- Training/test set approach: split data in two parts
 - Training data: used to develop model, usually 50%, 80% or 90% of data set
 - Test set: used to assess prediction accuracy
- Want a large training data set (to get a good model) and a large test set (to get a precise estimate of rMSEP)

- Cross validation gets the best of both.
 - leave-one-out cv: fit model without obs i, use that model to compute $\hat{y_i}$
 - 10-fold cv: same idea, blocks of N/10 observations
- Can be used to choose a smoothing parameter
- Find λ^2 that minimizes cv prediction error

 $CV(\lambda^2) = \sum_{i=1}^n \{ y_i - \hat{f}_{-i}(x_i; \lambda^2) \}^2,$

where $\hat{f}_{-i}(x_i; \lambda^2)$ is the predicted value of y_i using a penalized linear spline function estimated with smoothing parameter λ^2 from the data set that excludes the i^{th} observation.

- Find λ^2 value that minimizes $CV(\lambda^2)$. Perhaps compute $CV(\lambda^2)$ for a grid of λ^2 values
- Requires a **LOT** of computing (each obs, many λ^2)

• Approximation to $CV(\lambda^2)$

$$CV(\lambda^2) \approx \sum_{i=1}^n \left\{ \frac{y_i - \hat{f}(x_i; \lambda^2)}{1 - \mathcal{S}_{\lambda^2, ii}} \right\}^2$$

, where $S_{\lambda^2,ii}$ is the i^{th} diagonal element of the smoother matrix $S_{\lambda^2,ii} = x(x'x + \lambda^2 D)^{-1}x'$.

- Remember that $\hat{\mathbf{y}} = x(x'x + \lambda^2 D)^{-1}x'y = S_{\lambda^2,ii}y$
- OLS: $\hat{y} = X(X'X)^{-}X'y = P_{X}y$
- The smoother matrix S_{λ^2} is analogous to the "hat" or projection matrix, $P_{\pmb{X}}$ in a Gauss-Markov model.

- Stat 500: discussed "deleted residuals" $y_i \hat{y}_{-i}$, where \hat{y}_{-i} is the prediction of y_i when model fit without observation i.
- Can compute with refitting the model N times

$$y_i - \hat{y}_{-i} = \frac{y_i - \hat{y}_i}{1 - h_{ii}},$$

where h_{ii} is the i^{th} diagonal element of the "hat" matrix $H = P_x = x(x'x)^-x'$.

- h_{ii} = "leverage" of observation i
- Thus, the approximation $CV(\lambda^2) \approx \sum_{i=1}^n \left\{ \frac{y_i \hat{f}(x_i; \lambda^2)}{1 S_{\lambda^2, ii}} \right\}^2$ is analogous to the PRESS statistic $\sum_{i=1}^n (y_i \hat{y}_{-i})^2 = \sum_{i=1}^n (\frac{y_i \hat{y}_i}{1 h_{ii}})^2$ used in multiple regression.

2. Generalized Cross-Validation (GCV)

GCV is an approximation to CV obtained as follows:

$$GCV(\lambda^2) \equiv \sum_{i=1}^n \left\{ \frac{y_i - \hat{f}(x_i; \lambda^2)}{1 - \frac{1}{n} trace(S_{\lambda^2})} \right\}^2$$

- Since trace(S_{λ^2}) = $\sum_{i=1}^n S_{\lambda^2,ii}$, GCV is $CV(\lambda^2)$ using the average $\frac{1}{n} \sum_{i=1}^n S_{\lambda^2,ii}$ instead of each specific element
- Used same way: find λ^2 minimizes $GCV(\lambda^2)$
- GCV is not a generalization of CV
- Originally proposed because faster to compute
- In some situations, seems to work better than CV, see Wahba, G. (1990). Spline Models for Observational Data for details
- And in very complicated situations, cannot compute H but can estimate trace(H), so can't use CV but can use GCV.

3. The Linear Mixed Effects Model Approach

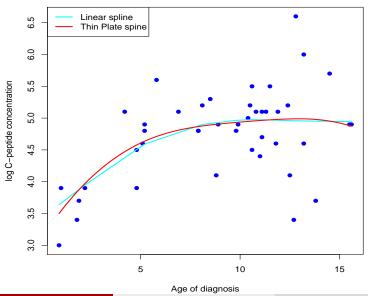
- Recall that for our linear spline approach, we assume the model $y_i = \beta_0 + \beta_1 x_i + \sum_{j=1}^k u_j (x_i k_j)^+ + \epsilon_i$ for i = 1, ..., n; where $e_1, ..., e_n \overset{i.i.d.}{\sim} (0, \sigma^2)$
- Suppose we add the following assumptions: $u_1, ..., u_k \stackrel{i.i.d.}{\sim} N(0, \sigma_u^2)$ independent of $e_1, ..., e_n \stackrel{i.i.d.}{\sim} N(0, \sigma_e^2).(\sigma_e^2 \equiv \sigma^2)$
- Then we may write our model as $\mathbf{v} = x\beta + Z\mathbf{u} + \epsilon$, where

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} Z = \begin{bmatrix} (x_1 - k_1)^+ & \dots & (x_1 - k_k)^+ \\ (x_2 - k_1)^+ & \dots & (x_2 - k_k)^+ \\ \vdots & & & \vdots \\ (x_n - k_1)^+ & \dots & (x_n - k_k)^+ \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_k \end{bmatrix} \epsilon = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{u} \\ \epsilon \end{bmatrix} \sim N \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \sigma_u^2 I & 0 \\ 0 & \sigma_u^2 I \end{bmatrix} \right)$$

• This is a linear mixed effects model!

- It can be shown that the BLUP of $X\beta + Z\boldsymbol{u}$ is equal to $w(w'w + \frac{\sigma_{\theta}^2}{\sigma_{cD}^2})^{-1}w'\boldsymbol{y}$ where w = [x, z].
- Thus, the BLUP of $X\beta + Zu$ is equal to $S_{\frac{\sigma_e^2}{\sigma_u^2}} y = ($ Fitted values of linear spline smoother for $\lambda^2 = \frac{\sigma_e^2}{\sigma_u^2}))$
- Thus, we can use either ML or REML to estimate σ_u^2 and σ_e^2 . (Denote estimates by $\hat{\sigma}_u^2$ and $\hat{\sigma}_e^2$.)
- Then we can estimate $\boldsymbol{\beta}$ by $\hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\Sigma}}} = (x'\hat{\boldsymbol{\Sigma}}^{-1}x)^{-1}x'\hat{\boldsymbol{\Sigma}}\boldsymbol{y} \text{ and predict } \boldsymbol{u} \text{ by}$ $\hat{\boldsymbol{u}}_{\hat{\boldsymbol{\Sigma}}} = \hat{\boldsymbol{G}}Z'\hat{\boldsymbol{\Sigma}}^{-1}(\boldsymbol{y} x\hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\Sigma}}}) = \hat{\sigma}_u^2 Z'\hat{\boldsymbol{\Sigma}}^{-1}(\boldsymbol{y} x\hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\Sigma}}}) \text{ where }$ $\hat{\boldsymbol{\Sigma}} = \hat{\sigma}_u^2 ZZ' + \hat{\sigma}_e^2 \boldsymbol{I}$
- The resulting coefficients $\begin{bmatrix} \hat{\beta}_{\hat{\Sigma}} \\ \hat{u}_{\hat{\Sigma}} \end{bmatrix}$ will be equal to the estimate obtained using penalized least squares with smoothing parameter $\lambda^2 = \frac{\hat{\sigma}_0^2}{\hat{\sigma}_0^2}$



112 / 125

- Still need to choose number of knots (k) and their locations $k_1, ..., k_k$
- Ruppert, Wand and Carroll (2003) recommend 20-40 knots maximum, located so that there are roughly 4-5 unique x values between each pair of knots.
- Most software automatically chooses knots using a strategy consistent (roughly) with this recommendation.
- Knot choice is not usually as important as choice of smoothing parameter
 - As long as there are enough knots, a good fit can usually be obtained.
 - Penalization prevents a fit that is too rough even when there are many knots.

Towards inference with a penalized spline

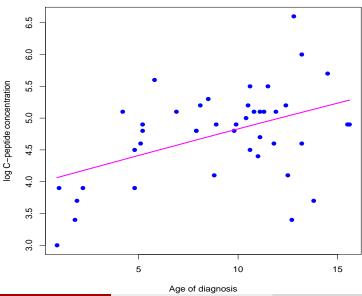
- If we want a confidence or prediction interval around the predicted line, need to know df for error.
- If we want to compare models (e.g. $Ey = \beta_0 + \beta_1 x$ vs Ey = f(x)), need to know df for penalized spline fit
- Can do this test because
 - Ey = $\beta_0 + \beta_1 x$ is nested in Ey = f(x) fit as a linear spline
 - Ey = $\beta_0 + \beta_1 x + \beta_2 x^2$ is nested in Ey = f(x) fit as a thin plate spline
- If we use a penalized linear spline, how many parameters are we using to estimate the mean function?
- It may seem like we have k+2 parameters $\beta_0, \beta_1, u_1, u_2, ..., u_k$.

- However, $u_1, u_2, ..., u_k$ are not completely free parameters because of penalization.
- The effective number of parameters is lower than k+2 and depends on the value of the smoothing parameter λ^2 .
- Recall that our estimates of $\beta_0, \beta_1, u_1, u_2, ..., u_k$ minimize $\sum_{i=1}^{n} (y_i \beta_0 \beta_1 x_i \sum_{j=1}^{k} u_j (x_i k_j)^+)^2 + \lambda^2 \sum_{j=1}^{k} u_j^2$
- A larger λ^2 means less freedom to choose values for $u_1, ..., u_k$ for from 0.
- Thus, the number of effective parameters should decrease as λ^2 increases.
- In the Gauss-Markov framework with no penalization, the number of free parameters used to estimate the mean of $\mathbf{y}(x\beta)$ is $rank(x) = rank(P_x) = trace(P_x)$

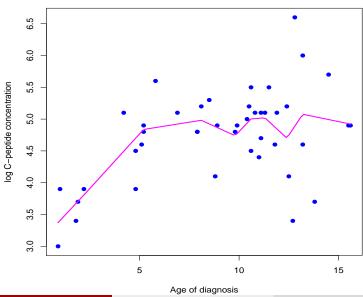
- For a smoother, the smoother matrix S plays the role of P_x .
- For penalized linear splines, the smoother matrix is $S_{\lambda^2} = x(x'x + \lambda^2 D)^{-1}x'$ where

• Thus, we define the effective number of parameter (or the degrees of freedom) used when estimating f(x) to be $tr(S_{\lambda^2}) = tr[x(x'x + \lambda^2 D)^{-1}x'] = tr[(x'x + \lambda^2 D)^{-1}x'x]$

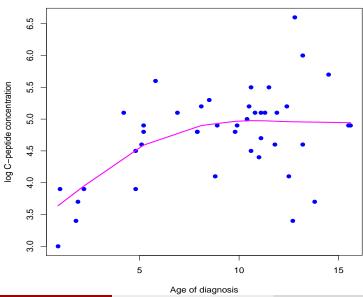
df model = 2, df error = 41



df model = 10, df error = 33



df model = 3.59, df error = 38.76



- Recall that our basic model is $y_i = f(x_i) + \epsilon_i$ (i = 1, ..., n) where $e_1, ..., e_n \stackrel{i.i.d.}{\sim} (0, \sigma^2)$.
- How should we estimate σ^2 ?
- A natural estimator would be $MSE \equiv \frac{\sum_{i=1}^{n} \left\{ y_i \hat{f}(x_i, \lambda^2) \right\}^2}{df_{ERROR}}$
- df_{ERROR} is usually defined to be $n 2tr(S_{\lambda^2}) + tr(S_{\lambda^2}S'_{\lambda^2})$.
- To see where this comes from, recall that for w random and A fixed E(w'Aw) = E(w)'AE(w) + tr(AVar(w))

Let
$$\mathbf{f} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}$$
 and $\hat{\mathbf{f}}_{\lambda^2} = \begin{bmatrix} \hat{f}(x_1; \lambda^2) \\ \hat{f}(x_2; \lambda^2) \\ \vdots \\ \hat{f}(x_n; \lambda^2) \end{bmatrix} = S_{\lambda^2} \mathbf{y}$

• Then, $E[\sum_{i=1}^{n} \{y_i - \hat{t}(x_i; \lambda^2)\}^2]$

$$= E[(\mathbf{y} - \hat{\mathbf{f}})'(\mathbf{y} - \hat{\mathbf{f}})]$$

$$= E[||\mathbf{y} - \hat{\mathbf{f}}||^{2}] = E[||(I - S_{\lambda^{2}})\mathbf{y}||^{2}]$$

$$= E[\mathbf{y}'(I - S_{\lambda^{2}})'(I - S_{\lambda^{2}})\mathbf{y}]$$

$$= \mathbf{f}'(I - S_{\lambda^{2}})'(I - S_{\lambda^{2}})\mathbf{f} + \text{tr}[(I - S_{\lambda^{2}})'(I - S_{\lambda^{2}})\sigma^{2}I]$$

$$= ||(I - S_{\lambda^{2}})\mathbf{f}||^{2} + \sigma^{2}\text{tr}[I - S'_{\lambda^{2}} - S_{\lambda^{2}} + S'_{\lambda^{2}}S'_{\lambda^{2}}]$$

$$= ||\mathbf{f} - S_{\lambda^{2}}\mathbf{f}||^{2} + \sigma^{2}[\text{tr}(I) - 2\text{tr}(S_{\lambda^{2}}) + \text{tr}(S'_{\lambda^{2}}S_{\lambda^{2}})]$$

$$\approx \sigma^{2}[n - 2\text{tr}(S_{\lambda^{2}}) + \text{tr}(S'_{\lambda^{2}}S_{\lambda^{2}})]$$

• Thus, if we define $df_{ERROR} = n - 2 \mathrm{tr}(S_{\lambda^2}) + \mathrm{tr}(S_{\lambda^2}'S_{\lambda^2}), E(MSE) \approx \sigma^2$

• The Standard Error of $\hat{f}(x; \sigma^2)$:

$$\hat{f}(x; \lambda^{2}) = \hat{\beta}_{o} + \hat{\beta}_{1}x + \sum_{j=1}^{k} \hat{u}_{j}(x - k_{j})^{+}$$

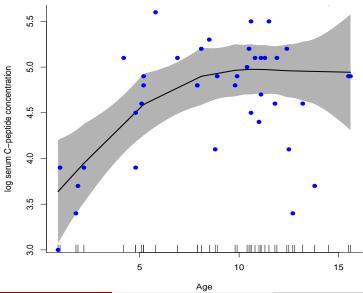
$$= [1, x, (x - k_{1})^{+}, ..., (x - k_{k})^{+}] \begin{bmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \hat{u}_{1} \\ \vdots \\ \hat{u}_{k} \end{bmatrix}$$

=
$$[1, x, (x - k_1)^+, ..., (x - k_k)^+](x'x + \lambda^2 D)^{-1}x'y = C'y$$

• If λ^2 and the knots, k_i , are fixed and not chosen as a function of the data, C is just a fixed (nonrandom) vector.

- Thus, $Var[\hat{f}(x; \lambda^2)] = Var(\mathbf{C}'\mathbf{y}) = \mathbf{C}'\sigma^2I\mathbf{C} = \sigma^2\mathbf{C}'\mathbf{C}$
- It follows that the standard error for $\hat{f}(x; \lambda^2)$ is $SE[\hat{f}(x; \lambda^2)] = \sqrt{MSE \ \pmb{C}' \pmb{C}}$
- If λ^2 and/or the knots are selected based on the data (as is usually the case), $\sqrt{MSE~C'C}$ is still used as an approximate standard error.
- However, that approximate standard error may be smaller than it should be because it does not account for variation in the C vector itself
- Ruppert, Wand, and Carroll (2003) suggest other strategies that use the linear mixed effects model framework.
- Calculate pointwise 1α confidence intervals for $\hat{f}(x_i)$ by $t_{1-\alpha/2,dfe}\sqrt{Var[\hat{f}(x;\lambda^2)]}$, where dfe is the df_{FBOR} defined a few pages ago

Linear spline fit with 95% pointwise ci



Extensions of penalized splines

- More than one X variable
 - Can fit either as a thin plate spline, $f(X_1, X_2)$
 - or as additive effects: $f_1(X_1) + f_2(X_2)$
 - Can combine parametric and nonparametric forms: $\beta_0 + \beta_1 X_1 + f(X_2)$
- Additive effects models sometimes called Generalized Additive Models (GAM's)
- Penalized splines provide a model for Ey
- Our discussion has only considered $y_i \sim N(Ey_i, \sigma^2)$
- Can combine with GLM ideas, e.g.:
 y_i ∼ Poisson(f(x_i)) or Binomial(f(x_i))

This is a compressed version of diabetes.r. The version on the class web site has more extensive comments.

```
# these can be fit by at least three packages:
# gam() in mgcv, spm() in SemiPar, and fda

# I've used gam() before. spm() has some pecularities
# Previous instructors of 511 used spm()
# the results are slightly different and I haven't ha
# track down why.
# To replicate lecture results, this code demonstrates
library(SemiPar)
```

```
diabetes <- read.csv('diabetes.csv')
plot (diabetes $ age, diabetes $ y, pch = 19, col = 4,
  xlab='Age at diagnosis', ylab='log C-peptide concent
# a couple of pecularities
# 1) formula interface to spm() does not
# accept data= argument.
# 2) to use predict.spm(), cannot use diabetes$age.
# I use attach to avoid problems.
# basic call to spm
attach (diabetes)
diab.spm \leftarrow spm(y \sim f(age));
```

```
plot (diab.spm)
    Bands are pointwise 95% ci's for f hat(x)
diab.pred <- predict (diab.spm,
  newdata=data.frame(age=seg(1,16,0.5)))
lines (seq(1,16,0.5), diab.pred, lwd=2)
  default is normal d'n. can use binomial
#
    or Poisson, by specifying family=binomial
    or family=poisson
# warning: remember to specify f() to get a smooth
temp <- spm(diabetes$y ~ age)
# gives you the linear regression fit
# is useful for more than one X, some of which are to
# others by a smooth.
   © Dept. Statistics ()
                        Stat 511 - part 5
                                              Spring 2013
                                                     128 / 125
```

```
print(diab.spm) # not very informative
summary(diab.spm) # a little better

# info on where to find various potentially
# useful numbers is in the version on the web site
# also how to change the basis functions, amount
# of smoothing, and est. derivatives
```

a third pecularity: lots of useful values have be ex